

V Semester B.A./B.Sc. Examination, November/December 2016 (Semester Scheme) (Fresh) (CBCS) (2016 – 17 and Onwards) MATHEMATICS – VI

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART-A

Answer any five questions.

 $(5 \times 2 = 10)$

- 1. a) Write Euler's equation when f is independent of y.
 - b) Show that the functional $I = \int_{x_1}^{x_2} (y^2 + x^2y^1) dx$ assumes extreme values on the straight line y = x.
 - c) Define geodesic on a surface.
 - d) Evaluate $\int_{C} (5xdx + ydy)$ where C is the curve, $y = 2x^2$ from (0, 0) to (1, 2).
 - e) Evaluate $\int_{0}^{\pi} \int_{0}^{\sin y} y dx dy$.
 - f) Evaluate $\int_{0}^{1} \int_{0}^{x} \int_{0}^{z} dy dz dx$.
 - g) Show that the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab using Green's theorem.
 - h) Evaluate using Stoke's theorem $\oint_C (yzdx + zxdy + xydz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$.

P.T.O.

PART-B

 $(2 \times 10 = 20)$

Answer two full questions:

2. a) Prove that the necessary condition for the integral $I = \int_{x_1}^{x_2} f(x, y, y') dx$ with

 $y(x_1) = y_1$ and $y(x_2) = y_2$ to be an extremum is $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.

b) Find the geodesic on a plane.

OR

- 3. a) Show that the extremal of $I = \int_{x_1}^{x_2} \sqrt{y (1 + (y')^2)} dx$ is a parabola.
 - ,b) Find the extremal of the functional $I = \int_{0}^{1} \sqrt{1 + (y')^2} dx$ with y(0) = 1 and y(1) = 2.
- a) Find the shape of a chain which hangs under gravity between two fixed points.
 - b) Find the extremal of the functional $\int_{0}^{1} [(y')^{2} + x^{2}] dx$ subject to constraint $\int_{0}^{1} y dx = 2$ and having end conditions y(0) = 0, y(1) = 1.

OR

- 5. a) Find the function y which makes the integral $I = \int_{x_1}^{x_2} [y^2 + 4(y')^2] dx$ an extremum.
- b) Find the extremal of the functional $I = \int_0^{\pi} \left[(y')^2 y^2 \right] dx$ with y(0) = 0 and $y(\pi) = 1$ and subject to the constraint $\int_0^{\pi} y dx = 1$.

PART-C

Answer two full questions:

 $(2 \times 10 = 20)$

- 6. a) Evaluate $\int_{C} (x + y + z) ds$ where C is the line joining the points (0, 1, 0) and (1, 2, 3).
 - b) Evaluate $\iint_A (4x^2 y^2) dxdy$, where A is the area bounded by the lines y = 0, y = x and x = 1.

OR

- 7. a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} x e^{x^2/y} dx dy$, by changing the order of integration.
 - b) Find the area bounded by the arc of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in first quadrant.
- 8. a) Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dz \, dy \, dx}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$.
 - b) Evaluate $\iint_R \frac{x^2y^2}{x^2+y^2} dxdy$ using polar co-ordinates, where R is the annular region between the circles $x^2+y^2=2$ and $x^2+y^2=1$.

OR

- 9. a) Find the volume bounded by the surface $z = a^2 x^2$ and the planes x = 0, y = 0, z = 0 and y = b.
 - b) If R is the region bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1, show that $\iiint_R z \, dx \, dy \, dz = \frac{1}{24}$.

PART-D

Answer two full questions:

 $(2 \times 10 = 20)$

- 10. a) State and prove Gauss' Divergence Theorem.
 - b) Evaluate using Green's theorem for $\oint_C [xy dx + yx^2 dy]$, where C is the curve enclosing the region bounded by the curve $y = x^2$ and the line y = x.
- 11. a) Verify Green's theorem in the plane for $\oint_C [(x^2 xy^3) dx + (y^2 2xy) dy]$, where C is the square with vertices (0, 0), (2, 0), (2, 2) and (0, 2).
 - b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ using divergence theorem where $\vec{F} = x \hat{i} y \hat{j} + (z^2 1) \hat{k}^2$ and S is the closed surface bounded by planes z = 0, z = 1 and the cylinder $x^2 + y^2 = 4$.
- 12. a) Verify Stokes theorem for $\vec{F} = 2y\hat{i} + 3x\hat{j} z^2\hat{k}$; C is the boundary of the upper half of the surface of the sphere $x^2 + y^2 + z^2 = 9$.
 - b) Evaluate using Gauss' divergence theorem $\iint_S \vec{F} \cdot \hat{n} ds \;, \; \text{ where}$ $\vec{F} = 2xy\hat{i} + yz^2\hat{j} + xz\hat{k} \; \text{ and S is the total surface of the rectangular parallelopiped bounded by the planes } x = 0, y = 0, z = 0, x = 1, y = 2, z = 3.$ OR
- 13. a) Evaluate $\oint_C \vec{F} \cdot d\vec{r}$, using Stoke's theorem where $\vec{F} = (y z + 2) \hat{i} + (yz) \hat{j} (xz) \hat{k}$ taken over the surface S of the cube $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$.
 - b) By using Green's theorem evaluate $\oint_C [(3x y)dx + (2x + y)dy]$ where C is the circle $x^2 + y^2 = a^2$.